On a new subclass of Ruscheweyh-type harmonic multivalent functions
نویسندگان
چکیده
*Correspondence: [email protected] Department of Mathematics, Faculty of Arts and Science, Uludag University, Bursa, 16059, Turkey Abstract We introduce a certain subclass of harmonic multivalent functions defined by using a Ruscheweyh derivative operator. We obtain coefficient conditions, distortion bounds, extreme points, convex combination for the above class of harmonic multivalent functions. We also derive inclusion relationships involving the neighborhoods of harmonic multivalent functions belonging to this subclass. MSC: 30C45; 30C50
منابع مشابه
On a subclass of multivalent analytic functions associated with an extended fractional differintegral operator
Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.
متن کاملInclusion and Neighborhood Properties of Some Analytic and Multivalent Functions
By means of a certain extended derivative operator of Ruscheweyh type, the authors introduce and investigate two new subclasses of p-valently analytic functions of complex order. The various results obtained here for each of these function classes include coefficient inequalities and the consequent inclusion relationships involving the neighborhoods of the p-valently analytic functions.
متن کاملGeometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کاملProperties of a Subclass of Multivalent Harmonic Functions Defined by a Linear Operator
In this paper, we introduce a linear operator for harmonic multivalent functions by using harmonic convolution operator and generalized Saitoh operator. We investigate some properties of a new subclass of harmonic multivalent functions defined by using this operator.
متن کاملOn meromorphically multivalent functions defined by multiplier transformation
The purpose of this paper is to derive various useful subordination properties and characteristics for certain subclass of multivalent meromorphic functions, which are defined here by the multiplier transformation. Also, we obtained inclusion relationship for this subclass.
متن کامل